Kamis, 15 Maret 2012

SEJARAH MATEMATIKA


Matematika adalah alat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan,industri, sains). Sejarah matematika adalah penyelidikan terhadap asalmula penemuan di dalam matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangun peradaban manusia sepanjang masa.
Kata "matematika" berasal dari kata μάθημα(máthema) dalam bahasa Yunani
yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός
(mathematikós) yang diartikan sebagai "suka belajar".

Metode yang digunakan adalah eksperimen atau penalaran induktif dan penalaran deduktif.Penalaran induktif adalah penarikan kesimpulan setelah melihat kasus-kasus yangkhusus. Kesimpulan penalaran induktif memiliki derajat kebenaran barangkalibenar atau tidak perlu benar.

Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat.Tulisan matematika terkuno yang telah ditemukan adalah Plimpton322 (matematika Babilonia sekitar 1900 SM), Lembaran Matematika Rhind (Matematika Mesir sekitar 2000-1800 SM) dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai teorema Pythagoras,yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.

Sumbangan matematikawan Yunani memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan kekakuan matematika di dalam pembuktian matematika) dan perluasan pokok bahasan matematika. Kata "matematika" berasal dari kata μάθημα(máthema) dalam bahasa Yunani yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός (mathematikós) yang diartikan sebagai "suka belajar". Matematika Cina membuat sumbangan dini, termasuk notasi posisional. Sistem bilangan Hindu-Arab dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam. Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini. Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah pada pengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.

Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abad kemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

Sejarah matematika dilihat :

Secara Geografis

1. Mesopotamia
- Menentukan system bilangan pertama kali
- Menemukan system berat dan ukur
- Tahun 2500 SM system desimal tidak lagi digunakan dan lidi diganti oleh notasi
berbentuk baji

2. Babilonia
- Menggunakan sitem desimal dan π=3,125
- Penemu kalkulator pertama kali
- Mengenal geometri sebagai basis perhitungan astronomi
- Menggunakan pendekatan untuk akar kuadrat
- Geometrinya bersifat aljabaris
- Aritmatika tumbuh dan berkembang baik menjadi aljabar retoris yang
berkembang
- Sudah mengenal teorema Pythagoras

3. Mesir Kuno
- Sudah mengenal rumus untuk menghitung luas dan isi
- Mengenal system bilangan dan symbol pada tahun 3100 SM
-Mengenal tripel Pythagoras
- Sitem angka bercorak aditif dan aritmatika
- Tahun 300 SM menggunakan system bilangan berbasis 10

4. Yunani Kuno
- Pythagoras membuktikan teorema Pythagoras secara matematis (terbaik)
- Pencetus awal konsep nol adalah Al Khwarizmi
- Archimedes mencetuskan nama parabola, yang artinya bagian sudut kanan
kerucut
- Hipassus penemu bilangan irrasional
- Diophantus penemu aritmatika (pembahasan teori-teori bilangan yang isinya
merupakan pengembangan aljabar yang dilakukan dengan membuat sebuah
persamaan)
- Archimedes membuat geometri bidang datar
- Mengenal bilangan prima

5. India
- Brahmagyupta lahir pada 598-660 Ad
- Aryabtha (4018 SM) menemukan hubungan keliling sebuah lingkaran
- Memperkenalkan pemakaian nol dan desimal
- Brahmagyupta menemukan bilangan negatif
- Rumus a2+b2+c2 telah ada pada “Sulbasutra”
- Geometrinya sudah mengenal tripel Pythagoras,teorema Pythagoras,transformasi
dan segitiga pascal

6. China
- Mengenal sifat-sifat segitiga siku-siku tahun 3000 SM
- Mengembangkan angka negatif, bilangan desimal, system desimal, system biner,
aljabar, geometri, trigonometri dan kalkulus
- Telah menemukan metode untuk memecahkan beberapa jenis persamaan yaitu
persamaan kuadrat, kubikdan qualitik
- Aljabarnya menggunakan system horner untuk menyelesaikan persamaan
Kuadrat

Berdasarkan Tokoh

1. Thales (624-550 SM)
Dapat disebut matematikawan pertama yang merumuskan teorema atau
proposisi, dimana tradisi ini menjadi lebih jelas setelah dijabarkan oleh Euclid.
Landasan matematika sebagai ilmu terapan rupanya sudah diletakan oleh Thales
sebelum muncul Pythagoras yang membuat bilangan.

2. Pythagoras (582-496 SM)
Pythagoras adalah orang yang pertama kali mencetuskan aksioma-aksioma,
postulat-postulat yang perlu dijabarkan ter lebih dahulu dalam mengembangkan
geometri. Pythagoras bukan orang yang menemukan suatu teorema Pythagoras
namun dia berhasil membuat pembuktian matematis. Persaudaraan Pythagoras
menemukan 2 sebagai bilangan irrasional.

3. Socrates (427-347 SM)
Ia merupakan seorang filosofi besar dari Yunani. Dia juga menjadi pencipta ajaran
serba cita, karena itu filosofinya dinamakan idealisme. Ajarannya lahir karena
pergaulannya dengan kaum sofis. Plato merupakan ahli piker pertama yang
menerima paham adanya alam bukan benda.

4. Ecluides (325-265 SM)
Euklides disebut sebagai “Bapak Geometri” karena menemuka teori bilangan dan
geometri. Subyek-subyek yang dibahas adalah bentuk-bentuk, teorema Pythagoras,
persamaan dalam aljabar, lingkaran, tangen,geometri ruang, teori proporsi dan
lain-lain. Alat-alat temuan Eukluides antara lain mistar dan jangka.

5. Archimedes (287-212 SM)
Dia mengaplikasikan prinsip fisika dan matematika. Dan juga menemukan
perhitungan π (pi) dalam menghitung luas lingkaran. Ia adalah ahli matematika
terbesar sepanjang zaman dan di zaman kuno. Tiga kaaarya Archimedes
membahas geometri bidang datar, yaitu pengukuran lingkaran, kuadratur dari
parabola dan spiral.

6. Appolonius (262-190 SM)
Konsepnya mengenai parabola, hiperbola, dan elips banyak memberi sumbangan
bagi astronomi modern. Ia merupakan seorang matematikawan tang ahli dalam
geometri. Teorema Appolonius menghubungkan beberapa unsur dalam segitiga.

7. Diophantus (250-200 SM)
Ia merupakan “Bapak Aljabar” bagi Babilonia yang mengembangkan
konsep-konsep aljabar Babilonia. Seorang matematikawan Yunani yang bermukim
di Iskandaria. Karya besar Diophantus berupa buku aritmatika, buku karangan
pertama tentang system aljabar. Bagian yang terpelihara dari aritmatika
Diophantus berisi pemecahan kira-kira 130 soal yang menghasilkan
persamaan-persamaan tingkat pertama.

Hubungan Filsafat Dengan Matematika

Matematika dan filsafat mempunyai sejarah keterikatan satu dengan yang lain sejak jaman Yunani Kuno. Matematika di samping merupakan sumber dan inspirasi bagi para filsuf, metodenya juga banyak diadopsi untuk mendeskripsikan pemikiran filsafat. Kita bahkan mengenal beberapa matematikawan yang sekaligus sebagai sorang filsuf, misalnya Descartes, Leibniz, Bolzano, Dedekind, Frege, Brouwer, Hilbert, G¨odel, and Weyl. Pada abad terakhir di mana logika yang merupakan kajian sekaligus pondasi matematika menjadi bahan kajian penting baik oleh para matematikawan maupun oleh para filsuf. Logika matematika mempunyai peranan hingga sampai era filsafat kontemporer di mana banyak para filsuf kemudian mempelajari logika. Logika matematika telah memberi inspirasi kepada pemikiran filsuf, kemudian para filsuf juga berusaha mengembangkan pemikiran logika misalnya “logika modal”, yang kemudian dikembangkan lagi oleh para matematikawan dan bermanfaat bagi pengembangan program komputer dan analisis bahasa. Salah satu titik krusial yang menjadi masalah bersama oleh matematika maupun filsafat misalnya persoalan pondasi matematika. Baik matematikawan maupun para filsuf bersama-sama berkepentingan untuk menelaah apakah ada pondasi matematika? Jika ada apakah pondasi itu bersifat tunggal atau jamak? Jika bersifat tunggal maka apakah pondasi itu? Jika bersifat jamak maka bagaimana kita tahu bahwa satu atau beberapa diantaranya lebih utama atau tidak lebih utama sebagai pondasi? Pada abad 20, Cantor diteruskan oleh Sir Bertrand Russell, mengembangkan teori himpunan dan teori tipe, dengan maksud untuk menggunakannya sebagai pondasi matematika. Namun kajian filsafat telah mendapatkan bahwa di sini terdapat paradoks atau inkonsistensi yang kemudian membangkitkan kembali motivasi matematikawan di dalam menemukan hakekat dari sistem matematika.

Dengan teori ketidak-lengkapan, akhirnya Godel menyimpulkan bahwa suatu sistem matematika jika dia lengkap maka pastilah tidak akan konsisten; tetapi jika dia konsisten maka dia patilah tidak akan lengkap. Hakekat dari kebenaran secara bersama dipelajari secara intensif baik oleh filsafat maupun matematika. Kajian nilai kebenaran secara intensif dipelajari oleh bidang epistemologi dan filsafat bahasa. Di dalam matematika, melalui logika formal, nilai kebenaran juga dipelajari secara intensif. Kripke, S. dan Feferman (Antonelli, A., Urquhart, A., dan Zach, R. 2007) telah merevisi teori tentang nilai kebenaran; dan pada karyanya ini maka matematika dan filsafat menghadapi masalah bersama. Di lain pihak, pada salah satu kajian filsafat, yaitu epistemologi, dikembangkan pula epistemologi formal yang menggunakan pendekatan formal sebagai kegiatan riset filsafat yang menggunakan inferensi sebagai sebagai metode utama. Inferensi demikian tidak lain tidak bukan merupakan logika formal yang dapat dikaitkan dengan teori permainan, pengambilan keputusan, dasar komputer dan teori kemungkinan.

Para matematikawan dan para filsuf secara bersama-sama masih terlibat di dalam perdebatan mengenai peran intuisi di dalam pemahaman matematika dan pemahaman ilmu pada umumnya. Terdapat langkah-langkah di dalam metode matematika yang tidak dapat diterima oleh seorang intuisionis. Seorang intuisionis tidak dapat menerima aturan logika bahwa kalimat “a atau b” bernilai benar untuk a bernilai benar dan b bernilai benar. Seorang intuisionis juga tidak bisa menerima pembuktian dengan metode membuktikan ketidakbenaran dari ingkarannya. Seorang intuisionis juga tidak dapat menerima bilangan infinit atau tak hingga sebagai bilangan yang bersifat faktual. Menurut seorang intuisionis, bilangan infinit bersifat potensial. Oleh karena itu kaum intuisionis berusaha mengembangkan matematika hanya dengan bilangan yang bersifat finit atau terhingga.

Banyak filsuf telah menggunakan matematika untuk membangun teori pengetahuan dan penalaran yang dihasilkan dengan memanfaatkan bukti-bukti matematika dianggap telah dapat menghasilkan suatu pencapaian yang memuaskan. Matematika telah menjadi sumber inspirasi yang utama bagi para filsuf untuk mengembangkan epistemologi dan metafisik. Dari pemikiran para filsuf yang bersumber pada matematika diantaranya muncul pemikiran atau pertanyaan: Apakah bilangan atau obyek matematika memang betul-betul ada? Jika mereka ada apakah di dalam atau di luar pikiran kita? Jika mereka ada di luar pikiran kita bagaimana kita bisa memahaminya? Jika mereka ada di dalam pikiran kita bagaimana kita bisa membedakan mereka dengan konsep-konsep kita yang lainnya? Bagaimana hubungan antara obyek matematika dengan logika? Pertanyaan tentang “ada” nya obyek matematika merupakan pertanyaan metafisik yang kedudukannya hampir sama dengan pertanyaan tentang keberadaan obyek-obyek lainnya seperti universalitas, sifat-sifat benda, dan nilai-nilai; menurut beberapa filsuf jika obyek-obyek itu ada maka apakah dia terkait dengan ruang dan waktu? Apakah dia bersifat aktual atau potensi? Apakah dia bersifat abstrak? Atau konkrit? Jika kita menerima bahwa obyek matematika bersifat abstrak maka metode atau epistemologi yang bagaimana yang mampu menjelaskan obyek tersebut? Mungkin kita dapat menggunakan bukti untuk menjelaskan obyek-obyek tersebut, tetapi bukti selalu bertumpu kepada aksioma. Pada akhirnya kita akan menjumpai adanya “infinit regress” karena secara filosofis kita masih harus mempertanyakan kebenaran dan keabsahan sebuah aksioma.

Hannes Leitgeb di (Antonelli, A., Urquhart, A., dan Zach, R. 2007) di “Mathematical Methods in Philosophy” telah menyelidiki penggunaan matematika di filsafat. Dia menyimpulkan bahwa metode matematika mempunyai kedudukan penting di filsafat. Pada taraf tertentu matematika dan filsafat mempunyai persoalan-persoalan bersama. Hannes Leitgeb telah menyelidiki aspek-aspek dalam mana matematika dan filsafat mempunyai derajat yang sama ketika melakukan penelaahan yatitu kesamaan antara obyek, sifat-sifat obyek, logika, sistem-sistem, makna kalimat, hukum sebab-akibat, paradoks, teori permainan dan teori kemungkinan. Para filsuf menggunakan logika sebab-akibat untuk untuk mengetahui implikasi dari konsep atau pemikirannya, bahkan untuk membuktikan kebenaran ungkapan-ungkapannya. Joseph N. Manago (2006) di dalam bukunya “ Mathematical Logic and the Philosophy of God and Man” mendemonstrasikan filsafat menggunakan metode matematika untuk membuktikan Lemma bahwa terdapat beberapa makhluk hidup bersifat “eternal”. Makhluk hidup yang tetap hidup disebut bersifat eternal.

LATIHAN SOAL ! 

1    Jelaskan pengertian sejarah matematika?
2    Apa yang dimaksud dengan penalaran induktif?
3    Jelaskan secara singkat sejarah matematika pada zaman yunani kuno?
4    Jelaskan hubungan filsafat dan matematika?
5    Sebutkan beberapa tokoh dan penemuannya dalam sejarah matematika?

SEJARAH GEOMETRI NON-EUCLID

Non-Euclidean geometri adalah salah satu dari dua geometri tertentu yang, longgar berbicara, diperoleh dengan meniadakan Euclidean paralel postulat , yaitu hiperbolik dan geometri eliptik . Ini adalah satu istilah yang, untuk alasan sejarah, memiliki arti dalam matematika yang jauh lebih sempit dari yang terlihat untuk memiliki dalam bahasa Inggris umum. Ada banyak sekali geometri yang tidak geometri Euclidean , tetapi hanya dua yang disebut sebagai non-Euclidean geometri.
Perbedaan penting antara geometri Euclidean dan non-Euclidean adalah sifat paralel baris. Euclid ‘s kelima mendalilkan, yang paralel mendalilkan , setara dengan yang Playfair postulat yang menyatakan bahwa, dalam bidang dua dimensi, untuk setiap garis yang diketahui dan A titik, yang tidak pada ℓ, ada tepat satu garis melalui A yang tidak berpotongan ℓ. Dalam geometri hiperbolik, sebaliknya, ada tak terhingga banyak baris melalui A ℓ tidak berpotongan, sementara dalam geometri eliptik, setiap baris melalui A memotong (lihat entri pada geometri hiperbolik , geometri berbentuk bulat panjang , dan geometri mutlak untuk informasi lebih lanjut).
Cara lain untuk menggambarkan perbedaan antara geometri adalah mempertimbangkan dua garis lurus tanpa batas waktu diperpanjang dalam bidang dua dimensi yang baik tegak lurus ke saluran ketiga:
  • Dalam geometri Euclidean garis tetap konstan jarak dari satu sama lain bahkan jika diperpanjang hingga tak terbatas, dan dikenal sebagai paralel.
  • Dalam geometri hiperbolik mereka “kurva pergi” satu sama lain, peningkatan jarak sebagai salah satu bergerak lebih jauh dari titik persimpangan dengan tegak lurus umum, garis-garis ini sering disebut ultraparallels.
  • Dalam geometri berbentuk bulat panjang garis “kurva ke arah” satu sama lain dan akhirnya berpotongan.
Sejarah 

Sejarah Awal 

Sementara geometri Euclidean , dinamai matematikawan Yunani Euclid , termasuk beberapa dari matematika tertua, non-Euclidean geometri tidak secara luas diterima sebagai sah sampai abad ke-19.
Perdebatan yang akhirnya menyebabkan penemuan non-Euclidean geometri mulai segera setelah karya Euclid ‘s Elemen ditulis. Dalam Elemen, Euclid dimulai dengan sejumlah asumsi (23 definisi, lima pengertian umum, dan lima postulat) dan berusaha untuk membuktikan semua hasil lain ( proposisi ) dalam pekerjaan. Yang paling terkenal dari postulat sering disebut sebagai “Kelima Postulat Euclid,” atau cukup dengan ” paralel mendalilkan “, yang dalam formulasi asli Euclid adalah:
Jika garis lurus jatuh pada dua garis lurus sedemikian rupa sehingga sudut interior pada sisi yang sama bersama-sama kurang dari dua sudut yang tepat, maka garis-garis lurus, jika diproduksi tanpa batas waktu, bertemu di sisi itu yang adalah sudut kurang dari dua kanan sudut.
Lain yang hebat matematika telah menemukan bentuk-bentuk sederhana dari properti ini (lihat postulat paralel untuk laporan setara). Terlepas dari bentuk dalil, bagaimanapun, secara konsisten tampaknya lebih rumit dari yang lain Euclid postulat (termasuk, misalnya, “Antara dua titik garis lurus bisa diambil”).
Setidaknya seribu tahun, geometers merasa kesulitan akibat kompleksitas yang berbeda dari kelima postulat, dan percaya itu bisa dibuktikan sebagai teorema dari keempat lainnya. Banyak berusaha untuk menemukan bukti oleh kontradiksi , termasuk matematikawan Arab Ibn al-Haytham (Alhazen, abad ke-11), dengan Persia matematikawan Umar Khayyām (abad 12) dan Nasir al-Din al-Tusi (abad ke-13), dan dengan Italia matematika Giovanni Girolamo Saccheri (abad 18).
Teorema Ibn al-Haytham, Khayyam dan al-Tusi pada segiempat , termasuk segiempat Lambert dan Saccheri segiempat , adalah “teorema pertama dari hiperbolik dan geometri berbentuk bulat panjang . ” Teorema-teorema bersama dengan alternatif mereka mendalilkan, seperti aksioma Playfair ‘s , memainkan peran penting dalam perkembangan selanjutnya dari non-Euclidean geometri. Upaya-upaya awal pada menantang kelima postulat memiliki pengaruh yang besar terhadap pembangunan di antara geometers kemudian Eropa, termasuk Witelo , Levi ben Gerson , Alfonso , John Wallis dan Saccheri. Semua upaya awal dibuat di mencoba untuk merumuskan non-Euclidean Namun geometri diberikan bukti cacat dari paralel mendalilkan, mengandung asumsi yang pada dasarnya setara dengan postulat paralel. Upaya-upaya awal itu, bagaimanapun, memberikan beberapa sifat awal dari geometri hiperbolik dan eliptik.
Khayyam, misalnya, mencoba untuk mendapatkan dari setara mendalilkan ia merumuskan dari “prinsip-prinsip Bertuah” ( Aristoteles ): “Dua garis lurus berpotongan konvergen dan tidak mungkin untuk dua garis lurus konvergen menyimpang ke arah di mana mereka bertemu. ” Khayyam kemudian dianggap sebagai tiga kasus yang tepat, tumpul, dan akut yang sudut puncak dari sebuah segiempat Saccheri dapat mengambil dan setelah membuktikan sejumlah teorema tentang mereka, ia benar membantah kasus tumpul dan akut berdasarkan dalil nya dan karena berasal klasik postulat Euclid yang tidak disadarinya adalah setara dengan postulat sendiri. Contoh lain adalah anak al-Tusi, Sadr al-Din (kadang-kadang dikenal sebagai “Pseudo-Tusi”), yang menulis sebuah buku tentang subjek di 1298, berdasarkan pengalaman kemudian al-Tusi, yang disajikan lain setara hipotesis untuk paralel dalil . “Dia pada dasarnya revisi kedua sistem Euclidean aksioma dan dalil-dalil dan bukti-bukti proposisi banyak dari Elemen.” Karyanya diterbitkan di Roma tahun 1594 dan dipelajari oleh geometers Eropa, termasuk Saccheri  yang mengkritik pekerjaan ini serta yang dari Wallis.
Giordano Vitale , dalam bukunya Euclide restituo (1680, 1686), menggunakan Saccheri segiempat untuk membuktikan bahwa jika tiga poin adalah jarak yang sama di pangkalan AB dan CD KTT, maka AB dan CD di mana-mana berjarak sama.
Dalam sebuah karya berjudul Euclides ab Omni Naevo Vindicatus (Euclid Dibebaskan dari Semua Cacat), yang diterbitkan tahun 1733, Saccheri geometri eliptik cepat dibuang sebagai kemungkinan (beberapa orang lain dari aksioma Euclid harus dimodifikasi untuk geometri berbentuk bulat panjang untuk bekerja) dan mulai bekerja membuktikan besar jumlah hasil dalam geometri hiperbolik. Dia akhirnya mencapai titik di mana ia percaya bahwa hasil menunjukkan ketidakmungkinan geometri hiperbolik. Klaimnya tampaknya telah didasarkan pada pengandaian Euclidean, karena tidak ada kontradiksi logis hadir. Dalam upaya untuk membuktikan geometri Euclidean ia malah tidak sengaja menemukan sebuah geometri baru yang layak, tapi tidak menyadarinya.
Pada 1766 Johann Lambert menulis, tetapi tidak mempublikasikan, Theorie der Parallellinien di mana ia mencoba, sebagai Saccheri lakukan, untuk membuktikan postulat kelima. Dia bekerja dengan angka yang hari ini kita sebut segiempat Lambert, suatu segiempat dengan tiga sudut kanan (dapat dianggap setengah dari segiempat Saccheri). Dia segera menghilangkan kemungkinan bahwa sudut keempat adalah tumpul, karena memiliki Saccheri dan Khayyam, dan kemudian melanjutkan untuk membuktikan teorema banyak berdasarkan asumsi sudut akut. Tidak seperti Saccheri, ia tidak pernah merasa bahwa ia telah mencapai kontradiksi dengan asumsi ini. Dia telah membuktikan hasil non-Euclidean bahwa jumlah sudut dalam segitiga meningkat sebagai luas segitiga berkurang, dan ini menyebabkan dia untuk berspekulasi mengenai kemungkinan model kasus akut pada bola berjari-jari imajiner. Dia tidak membawa ide ini lebih jauh.
Pada saat ini itu sangat percaya bahwa alam semesta bekerja menurut prinsip-prinsip geometri Euclidean.

Penciptaan non-Euclidean Geometri 

Awal abad ke-19 akhirnya akan menyaksikan langkah-langkah yang menentukan dalam penciptaan non-Euclidean geometri. Sekitar 1830, Hungaria matematika János Bolyai dan Rusia matematika Nikolai Lobachevsky secara terpisah diterbitkan risalah pada geometri hiperbolik. Akibatnya, geometri hiperbolik disebut Bolyai-Lobachevskian geometri, baik sebagai matematikawan, independen satu sama lain, adalah penulis dasar non-Euclidean geometri. Gauss disebutkan kepada ayah Bolyai, ketika ditampilkan karya Bolyai muda, bahwa ia telah dikembangkan seperti geometri sekitar 20 tahun sebelumnya, meskipun ia tidak mempublikasikan. Sementara Lobachevsky menciptakan geometri non-Euclidean dengan meniadakan paralel mendalilkan, Bolyai bekerja di luar geometri di mana kedua Euclidean dan geometri hiperbolik yang mungkin tergantung pada k parameter. Bolyai berakhir karyanya dengan menyebutkan bahwa tidak mungkin untuk memutuskan melalui penalaran matematis saja jika geometri alam semesta fisik Euclid atau non-Euclidean, ini adalah tugas untuk ilmu fisik.
Bernhard Riemann , dalam sebuah kuliah yang terkenal pada 1854, mendirikan bidang geometri Riemann , membahas khususnya ide-ide sekarang disebut manifold , Riemannian metrik , dan kelengkungan . Ia dibangun sebuah keluarga tak terbatas geometri yang tidak Euclidean dengan memberikan rumus untuk keluarga metrik Riemann pada bola unit dalam ruang Euclidean . Yang paling sederhana ini disebut geometri berbentuk bulat panjang dan dianggap menjadi geometri non-Euclidean karena kurangnya garis paralel.

Terminologi 

Itu Gauss yang menciptakan istilah “non-euclidean geometri”.  Dia merujuk pada karyanya sendiri yang hari ini kita sebut geometri hiperbolik. Beberapa penulis modern yang masih menganggap “non-euclidean geometri” dan “geometri hiperbolik” menjadi sinonim. Pada tahun 1871, Felix Klein , dengan mengadaptasi metrik dibahas oleh Arthur Cayley pada tahun 1852, mampu membawa sifat metrik menjadi sebuah lokasi yang proyektif dan karena itu mampu menyatukan perawatan geometri hiperbolik, euclidean dan berbentuk bulat panjang di bawah payung projective geometri . Klein bertanggung jawab untuk istilah “hiperbolik” dan “eliptik” (dalam sistem, ia disebut geometri Euclidean “parabola”, sebuah istilah yang belum selamat dari ujian waktu). Pengaruhnya telah menyebabkan penggunaan saat ini dari “geometri non-euclidean” untuk berarti baik geometri “hiperbolik” atau “berbentuk bulat panjang”.
Ada beberapa hebat matematika yang akan memperpanjang daftar geometri yang harus disebut “non-euclidean” dengan berbagai cara. Dalam disiplin ilmu lainnya, terutama yang paling matematika fisika , istilah “non-euclidean” sering diartikan tidak Euclidean .

Aksioma Dasar non-Euclidean Geometri 

Geometri Euclidean aksiomatik dapat dijelaskan dalam beberapa cara. Sayangnya, sistem yang asli Euclid lima postulat (aksioma) bukan salah satu dari ini sebagai bukti nya mengandalkan asumsi tak tertulis beberapa yang juga seharusnya diambil sebagai aksioma. sistem Hilbert yang terdiri dari 20 aksioma paling dekat mengikuti pendekatan Euclid dan memberikan pembenaran untuk semua bukti Euclid. Sistem lain, menggunakan set yang berbeda dari istilah terdefinisi mendapatkan geometri yang sama dengan jalan yang berbeda. Dalam semua pendekatan, bagaimanapun, ada aksioma yang secara logis setara dengan kelima Euclid postulat, paralel dalil. Hilbert menggunakan bentuk aksioma Playfair, sementara Birkhoff , misalnya, menggunakan aksioma yang mengatakan bahwa “tidak ada sepasang yang sama tetapi tidak kongruen segitiga. ” Dalam salah satu sistem, penghapusan satu aksioma yang setara dengan postulat sejajar, dalam bentuk apapun yang diperlukan, dan meninggalkan semua aksioma lainnya utuh, menghasilkan geometri absolut . Sebagai pertama 28 proposisi Euclid (dalam The Elements) tidak memerlukan penggunaan postulat paralel atau apa setara dengan itu, mereka semua pernyataan benar dalam geometri mutlak.
Untuk mendapatkan geometri non-Euclidean, paralel dalil (atau ekuivalen) harus diganti oleh yang negasi . Meniadakan aksioma Playfair ‘s bentuk, karena itu adalah pernyataan majemuk (… terdapat satu dan hanya satu …), bisa dilakukan dengan dua cara. Entah ada akan ada lebih dari satu baris melalui paralel titik ke garis diberikan atau akan ada tidak ada garis melalui titik paralel ke garis yang diberikan. Dalam kasus pertama, menggantikan paralel dalil (atau ekuivalen) dengan pernyataan “Di pesawat, diberi titik P dan garis l tidak melewati P, terdapat dua garis melalui P yang tidak memenuhi l” dan menjaga semua aksioma lainnya, hasil geometri hiperbolik . Kasus kedua tidak ditangani dengan mudah. Cukup mengganti paralel mendalilkan dengan pernyataan, “Dalam pesawat, diberi titik P dan garis l tidak melewati P, semua garis melalui P memenuhi l”, tidak memberikan satu set konsisten aksioma. Ini mengikuti sejak garis paralel ada di geometri mutlak , tetapi pernyataan ini mengatakan bahwa tidak ada garis paralel. Masalah ini dikenal (dalam kedok yang berbeda) untuk Khayyam, Saccheri dan Lambert dan merupakan dasar untuk menolak mereka apa yang dikenal sebagai “kasus sudut tumpul”. Untuk mendapatkan satu set konsisten aksioma yang meliputi aksioma ini tentang tidak memiliki garis paralel, beberapa aksioma lain harus tweak. Penyesuaian harus dibuat tergantung pada sistem aksioma yang digunakan. Beberapa diantaranya tweak akan memiliki efek memodifikasi kedua postulat Euclid dari pernyataan bahwa segmen garis dapat diperpanjang tanpa batas waktu untuk pernyataan bahwa garis tak terbatas. Riemann ‘s geometri eliptik muncul sebagai geometri paling alami memuaskan aksioma ini.

Model non-Euclidean geometri 

Untuk rincian lebih lanjut tentang topik ini, lihat Model non-Euclidean geometri .
Pada bola, jumlah sudut segitiga tidak sama dengan 180 °. Permukaan sebuah bola bukan ruang Euclidean, tetapi secara lokal hukum geometri Euclidean adalah perkiraan yang baik. Dalam sebuah segitiga kecil di muka bumi, jumlah dari sudut sangat hampir 180 °.
Dua geometri Euclidean dimensi dimodelkan dengan gagasan kita tentang “datar pesawat . “

Geometri Elliptic

Model sederhana untuk geometri eliptik adalah bola, di mana garis ” lingkaran besar “(seperti ekuator atau meridian di dunia ), dan poin yang berlawanan satu sama lain (disebut poin antipodal ) diidentifikasi (dianggap sama). Ini juga salah satu model standar dari pesawat proyektif nyata . Perbedaannya adalah bahwa sebagai model geometri eliptik metrik diperkenalkan memungkinkan pengukuran panjang dan sudut, sedangkan pada model pesawat proyektif tidak ada metrik tersebut.
Dalam model berbentuk bulat panjang, untuk setiap garis yang diketahui dan titik A, yang tidak pada ℓ, semua baris melalui A akan berpotongan ℓ.

Geometri Hiperbolik 

Bahkan setelah pekerjaan Lobachevsky, Gauss, dan Bolyai, pertanyaannya tetap: apakah model seperti itu ada untuk geometri hiperbolik ? Model untuk geometri hiperbolik dijawab oleh Eugenio Beltrami , pada 1868, yang pertama kali menunjukkan bahwa permukaan yang disebut pseudosphere memiliki sesuai kelengkungan untuk model sebagian dari ruang hiperbolik , dan dalam makalah kedua di tahun yang sama, mendefinisikan Model Klein yang model keseluruhan dari ruang hiperbolik, dan digunakan ini untuk menunjukkan bahwa geometri Euclidean dan geometri hiperbolik adalah equiconsistent , sehingga geometri hiperbolik adalah logis konsisten jika dan hanya jika geometri Euclidean adalah. (Implikasi terbalik berikut dari horosphere model geometri Euclidean.)
Dalam model hiperbolik, dalam bidang dua dimensi, untuk setiap garis yang diketahui dan Titik, yang tidak pada ℓ, ada tak terhingga banyak baris melalui A yang tidak berpotongan ℓ.
Dalam model ini konsep-konsep non-Euclidean geometri sedang diwakili oleh objek Euclidean dalam pengaturan Euclidean. Ini memperkenalkan sebuah distorsi perseptual dimana garis-garis lurus dari geometri non-Euclidean yang diwakili oleh kurva Euclidean yang secara visual membungkuk. Ini “lentur” bukan milik non-Euclidean baris, hanya kecerdasan dari cara mereka diwakili.

Sifat Jarang

Euclid dan geometri non-Euclidean secara alami memiliki sifat serupa, yaitu mereka yang tidak tergantung pada sifat paralelisme. Kesamaan ini adalah subjek dari geometri netral (juga disebut geometri absolut). Namun, sifat yang membedakan satu geometri dari yang lain adalah orang-orang yang secara historis menerima perhatian yang besar.
Selain perilaku baris sehubungan dengan tegak lurus umum, disebutkan dalam pendahuluan, kami juga memiliki berikut ini:
  • Sebuah segiempat Lambert adalah segiempat yang memiliki tiga sudut kanan. Sudut keempat dari segiempat Lambert adalah akut jika geometri hiperbolik, sebuah sudut yang tepat jika geometri Euclidean adalah atau tumpul jika geometri adalah berbentuk bulat panjang. Akibatnya, empat persegi panjang hanya ada dalam geometri Euclidean.
  • Sebuah segiempat Saccheri adalah segiempat yang memiliki dua sisi dengan panjang yang sama, baik tegak lurus ke samping disebut basis. Dua lainnya dari sudut segiempat Saccheri disebut sudut puncak dan mereka memiliki ukuran yang sama. Sudut puncak dari sebuah segiempat Saccheri yang akut jika geometri hiperbolik, sudut yang tepat jika geometri Euclidean adalah sudut tumpul dan jika geometri adalah berbentuk bulat panjang.
  • Jumlah dari ukuran sudut segitiga apapun adalah kurang dari 180 ° jika geometri hiperbolik, sama dengan 180 ° jika geometri Euclidean, dan lebih besar dari 180 ° jika geometri adalah berbentuk bulat panjang. Cacat segitiga adalah nilai numerik (180 ° – jumlah dari ukuran sudut segitiga). Hasil ini juga dapat dinyatakan sebagai: cacat segitiga dalam geometri hiperbolik adalah positif, cacat segitiga dalam geometri Euclidean adalah nol, dan cacat segitiga dalam geometri eliptik adalah negatif.
Pentingnya 

Non-Euclidean geometri adalah contoh dari sebuah pergeseran paradigma dalam sejarah ilmu pengetahuan . Sebelum model pesawat non-Euclidean yang disajikan oleh Beltrami, Klein, dan Poincaré, geometri Euclidean berdiri tertandingi sebagai model matematika dari ruang . Selain itu, karena substansi subjek dalam geometri sintetis adalah pameran kepala rasionalitas, titik Euclidean pandang diwakili otoritas mutlak. Non-Euclidean geometri, meskipun diasimilasi oleh peneliti dipelajari, terus menjadi tersangka bagi mereka yang tidak memiliki paparan konsep hiperbolis dan elips.
Penemuan non-Euclidean geometri memiliki efek riak yang jauh melampaui batas-batas matematika dan ilmu pengetahuan. Filsuf Immanuel Kant pengobatan itu pengetahuan manusia memiliki peran khusus untuk geometri. Itu adalah contoh utama tentang sintetis pengetahuan apriori, tidak berasal dari indera atau disimpulkan melalui logika – pengetahuan kita tentang ruang merupakan kebenaran bahwa kita dilahirkan dengan. Sayangnya bagi Kant, konsepnya ini geometri unalterably benar adalah Euclidean. Teologi juga dipengaruhi oleh perubahan dari kebenaran absolut untuk kebenaran relatif dalam matematika yang adalah hasil dari pergeseran paradigma.
Keberadaan non-Euclidean geometri berdampak pada “kehidupan intelektual” dari Inggris Victoria dalam banyak hal dan khususnya adalah salah satu faktor yang menyebabkan yang menyebabkan pemeriksaan ulang pengajaran geometri berdasarkan Euclid ‘s Elemen . Masalah kurikulum yang hangat diperdebatkan pada saat itu dan bahkan subyek dari bermain, Euclid dan Rivals modern, ditulis oleh penulis Alice in Wonderland .

LATIHAN SOAL !
1.      Jelaskan pengertian geometri non-euclid?
2.      Apa pebedaan geometri euclid dan non-euclid?
3.      Jelaskan secara singkat penciptaan geometri non-euclid!
4.      Jelaskan aksioma non-euclid geometri!
5.      Sebutkan sifat serupa antara geometri euclid dan geometri non-euclid?
6.      Apa hubungan geometri non-euclid dan geometri hiperbolik?